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Abstract. We investigate the optical conductivity in the Mott insulating phase of the one-dimensional
extended Hubbard model with alternating hopping terms (dimerization) at quarter band filling. Optical
spectra are calculated for the various parameter regimes using the dynamical density-matrix renormal-
ization group method. The study of limiting cases allows us to explain the various structures found nu-
merically in the optical conductivity of this model. Our calculations show that the dimerization and the
nearest-neighbor repulsion determine the main features of the spectrum. The on-site repulsion plays only
a secondary role. We discuss the consequences of our results for the theory of the optical conductivity in
the Bechgaard salts.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 78.20.Bh Theory, models, and numerical
simulation – 8.40.Me Organic compounds and polymers

1 Introduction

The electronic properties of quasi-one-dimensional
charge-transfer salts have been intensively investi-
gated in recent years [1–3]. An important exam-
ple of such compounds is the family of Bechgaard
salts (TM)2X , where TM is the organic molecule
TMTSF (tetramethyltetraselenafulvalene) or TMTTF
(tetramethyltetrathiafulvalene), and X denotes an anion
such as ClO−

4 , PF−
6 , Br−, etc. These materials have

highly anisotropic structures and properties. Therefore,
it is believed that above an energy scale of a few meV
their electronic properties can be described in first
approximation by one-dimensional models.

The one-dimensional Hubbard model with alternating
hopping integrals (dimerization) and a quarter-filled band
has been proposed to describe various properties of the
Bechgaard salts [4–9], in particular their unusual opti-
cal spectrum [10–14]. In this model the formation of a
Mott insulating ground state is due to the interplay of
the Coulomb interaction between electrons and the lat-
tice dimerization. However, the relevance of this approach
for Bechgaard salts has remained controversial. Although
we know the generic features of the low-energy optical
spectrum in one-dimensional Mott insulators [15–17], the
optical conductivity of the quarter-filled Hubbard model
with dimerization has not been determined accurately yet.

a e-mail: eric.jeckelmann@uni-mainz.de

Thus, no direct comparison with the experimental spec-
trum observed in Bechgaard salts has been possible.

The recent development of the dynamical density
matrix renormalization-group (DDMRG) method [15,18]
allows us to calculate the dynamical properties of low di-
mensional correlated electron systems with an accuracy
comparable to exact diagonalizations but for much larger
system sizes. Here, we apply the DDMRG method to the
calculation of the optical conductivity in the quarter-filled
dimerized Hubbard model. The model and method are
briefly introduced in the next section. Then, we present
our results in Section 3. Finally, we discuss the conse-
quences of our results for the theory of the Bechgaard
salts in Section 4.

2 Model and method

The one-dimensional extended and dimerized Hubbard
model is defined by the Hamiltonian

Ĥ = −t1
∑

odd l;σ

(
ĉ†l,σ ĉl+1,σ + ĉ†l+1,σ ĉl,σ

)

−t2
∑

even l;σ

(
ĉ†l,σ ĉl+1,σ + ĉ†l+1,σ ĉl,σ

)
(1)

+U
∑

l

n̂l,↑n̂l,↓ + V
∑

l

(n̂l − ρ)(n̂l+1 − ρ).

It describes fermions with spin σ =↑, ↓ which can hop be-
tween neighboring sites representing the highest occupied
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molecular orbital (HOMO) of each TM molecule. There
are three electrons in the HOMOs of each pair (TM)2, so
that the band made of the HOMOs is three-quarter filled
in terms of electrons or quarter filled in terms of holes. We
use the hole representation and keep the number of par-
ticles N such that we have a density ρ = N/L = 1/2 for
an even number of lattice sites L. The operator ĉ+l,σ (ĉl,σ)
creates (annihilates) a hole with spin σ at site l. The hole
density operator is n̂l,σ = ĉ+l,σ ĉl,σ and n̂l = n̂l,↑ + n̂l,↓ is
the total number of holes at site l. The hopping integrals
t1 ≥ t2 ≥ 0 give rise to a single-particle dispersion

ε(k) = ±
√
∆2 sin2(k) + 4t2 cos2(k) (2)

with a total band width 4t = 2t1 + 2t2 and a (dimer-
ization) gap 2∆ = 2(t1 − t2). The Coulomb repulsion is
mimicked by a local Hubbard interaction U , and a nearest-
neighbor interaction V . The physically relevant parameter
regime for Bechgaard salts is U > 2V ≥ 0. In Table 1,
we show some values of the model parameters t1, t2, U ,
and V which have been proposed [5–7,19] to describe var-
ious (TM)2X salts.

We use open boundary conditions since density ma-
trix renormalization group (DMRG) algorithms are most
efficient for this type of boundary [20,21]. In open
chains it is important to use the correct form of the
(non-local) Coulomb interaction between electrons in the
Hamiltonian (1). Neglecting the average density (i.e., set-
ting ρ = 0 in Eq. (1)) results in complicated edge effects
in the excitation spectrum such as the existence of low-
energy excitations localized at the chain ends.

Two mechanisms can induce an insulating ground state
in this model at quarter filling [8,9]. First, the Umklapp
scattering in an effectively half-filled band [−2t ≤ ε(k) ≤
−∆] due to the dimerization can lead to a Mott insulat-
ing state accompanied by a 4kF bond order wave (BOW),
where kF = πρ/2 = π/4 is the Fermi vector. Second, for
large enough parameters U and V the Umklapp scattering
in the quarter-filled band [−2t ≤ ε(k) ≤ 2t, neglecting the
dimerization gap 2∆] can drive the ground state into an
insulating phase with a spontaneously broken symmetry:
a 4kF charge density wave (CDW) [8,22,23]. In the fam-
ily of Bechgaard salts, TMTSF compounds are believed
to be realizations of one-dimensional Mott insulators [16]
while TMTTF compounds are considered to be charge
ordered [9] like in a CDW state. For realistic parame-
ters (see Tab. 1), however, the system described by the
Hamiltonian (1) is a Mott insulator [8]. Therefore, we will
investigate the optical conductivity in the Mott insulating
phase only. Since we use open boundary conditions, we ob-
serve 2kF -BOW and 2kF - and 4kF -CDW fluctuations in-
duced by the chain ends (Friedel charge oscillations) in the
ground state. For all the parameters U, V, t1, t2 discussed
in this work, however, the ground state has no long-range
order or broken symmetry but the 4kF -BOW induced by
the alternating hopping terms t1 �= t2.

To determine the ground state properties and to
obtain some information about excited states of the
Hamiltonian (1) we use a standard DMRG tech-

Table 1. Model parameters (in meV) for various Bechgaard
salts from references [5–7,19].

t1 t2 U V

(TMTSF)2PF6 (Ref. [6]) 250 225 1250 0

(TMTSF)2ClO4 (Ref. [7]) 290 260 1450 210

(TMTTF)2PF6 (Refs. [5,19]) 135 95 945 380

nique [20,21]. For instance, the Mott gap (also called
single-particle charge gap or charge transfer gap)

Ec = E0(N + 1) +E0(N − 1) − 2E0(N) (3)

can be calculated from the ground state energies E0(Nh)
for Nh holes in the system [4,7].

The linear optical absorption is proportional to the real
part σ1(ω) of the optical conductivity, which is related
to the imaginary part of the current-current correlation
function by

σ1(ω > 0) =
−1
Lω

Im 〈ψ0|Ĵ 1
E0 + ω + iη − Ĥ

Ĵ |ψ0〉. (4)

Here, |ψ0〉 is the ground state of the Hamiltonian Ĥ , E0 is
the ground state energy, and η → 0+. Assuming that the
sites are equidistant, the current operator Ĵ is

Ĵ = −it1
∑

odd l;σ

(
ĉ†l,σ ĉl+1,σ − ĉ†l+1,σ ĉl,σ

)

−it2
∑

even l;σ

(
ĉ†l,σ ĉl+1,σ − ĉ†l+1,σ ĉl,σ

)
. (5)

With these definitions the optical conductivity σ1(ω) is
given in units of e2a/�, where 2a is the lattice constant
and e the charge of a hole. The frequency ω is given in
units of t/�.

In an open chain the optical conductivity is also re-
lated to the imaginary part of the dipole-dipole correlation
function

σ1(ω) =
−ω
L

Im 〈ψ0|D̂ 1
E0 + ω + iη − Ĥ

D̂|ψ0〉, (6)

where the dipole operator is

D̂ =
L∑

l=1

l (n̂l − ρ) =
L∑

l=1

(
l − L+ 1

2

)
n̂l. (7)

One can apply the DDMRG method [18] to chains of
finite size L to compute the optical conductivity σ1(ω)
with a finite broadening η > 0. Thus, DDMRG yields the
convolution of σ1(ω) with a Lorentzian of width η or the
quantity defined by equation (4) or equation (6) for a fi-
nite η (see Ref. [18] for more details and the advantages
of the various approaches). The properties of the optical
spectrum in the thermodynamic limit L → ∞ can be de-
termined using a finite-size-scaling analysis [18] with an
appropriate broadening

η(L) ∼ 1/L. (8)
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This approach has already been successfully used to study
the optical properties of simple one-dimensional Mott in-
sulators (i.e, in the extended Hubbard model at half fill-
ing) [15,24,25]. In particular, a quantitative description
has been achieved [26] for the experimental low-energy op-
tical conductivity spectrum in the quasi-one-dimensional
compound SrCuO2.

Often one can use deconvolution techniques to com-
pute a smooth spectrum without broadening from the
numerical DDMRG data for finite η and finite system
size [27,28]. In this work we use a standard linear reg-
ularization method for the inverse problem [29] to decon-
volve DDMRG spectra. The deconvolution usually yields
a very accurate description of the spectrum in the ther-
modynamic limit if it does not possess any sharp feature
(i.e., on a scale smaller than the broadening η used in the
DDMRG calculation). Therefore, the broadening η used in
the DDMRG calculation sets the resolution of a spectrum
obtained through a deconvolution.

An extension of the DDMRG method [18] can be used
to compute the excited states of the Hamiltonian which
contribute to the optical spectrum (4). We have used this
method to determine the optical gap (i.e., the excitation
energy ω1 of the lowest eigenstate |ψ1〉 with a finite matrix
element 〈ψ1|Ĵ |ψ0〉) in finite chains more accurately.

Up to m = 320 density-matrix eigenstates have been
kept per block in DDMRG calculations and up tom = 768
in ground state DMRG calculations. Truncation errors are
negligible for all results presented here. Thus, the accu-
racy of our calculations is mostly limited by the finite
broadening or resolution η ∼ 1/L imposed by finite sys-
tem lengths.

3 Results

In the absence of the non-local electron-electron interac-
tion (V = 0), the properties of the model (1) depend on
the parametersU and∆ only. (The average hopping term t
just fixes the energy scale.) First, we will investigate three
limiting cases [4] for which the main features in the optical
conductivity σ1(ω) can be easily understood: (i) the large-
dimerization limit t2 � t1(⇒ ∆ ≈ 2t), U ≤ 4t1, (ii) the
strong-coupling limit U � t1 > t2, and (iii) the weak-
coupling limit U � t2 < t1. Then we will discuss how the
optical spectrum changes when the parameters U and ∆
are varied between the limiting cases. Finally, we will con-
sider the effects of the nearest-neighbor repulsion V .

3.1 Large dimerization

In the dimer limit ∆ = 2t (t2/t1 → 0) the system is
made of independent dimers (i.e., pairs of nearest-neighbor
sites) [4]. The system eigenstates are products of the
dimer eigenstates (i.e., the eigenstates of a two-site Hub-
bard model). In the ground state at quarter filling each
dimer is occupied by exactly one hole, which is local-
ized on that dimer. The current operator (5) does not
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Fig. 1. Optical conductivity σ1(ω) in the large-dimerization
limit (∆ = 1.64t) for a strong effective coupling (U = 3.64t ≈
20t2) with a broadening η = 0.05t (L = 128 sites). Inset: same
data on a logarithmic scale.

couple the dimers. Therefore, only intra-dimer excitations
can contribute to the optical conductivity. (They corre-
spond to transitions from the bonding orbital to the anti-
bonding orbital of the dimer in the limit U = 0.) It can
be shown that σ1(ω) consists of a single Dirac δ-peak at
ω = 2t1 = 4t = 2∆ for any U ≥ 0. Note, that moving
one hole from a dimer to another one (inter-dimer excita-
tions) yields eigenstates of the system with an excitation
energy which can be lower than 2∆ and thus the Mott
gap Ec is lower than the optical gap ω1 = 2∆ in that spe-
cial case. (For instance, Ec vanishes as U goes to zero but
ω1 = 2∆ > 0.)

We now discuss the optical excitations for a finite inter-
dimer hopping t2 � t1 and U < 4t1. (For larger U/t1 the
spectrum is better understood starting from the strong-
coupling limit U � t1, which is discussed in the next sec-
tion.) For small but finite t2 the dimer eigenstates become
hybridized and build bands of delocalized electronic states
with a bandwidth ∝ t2. Thus, in the optical spectrum the
δ-peak at ω = 2t1 is replaced by an narrow absorption
band (‘intra-dimer’ band) of width ∝ t2 around ω = 2t1
[approximately for 2∆ = 2(t1 − t2) < ω < 4t = 2(t1 + t2)].
Figures 1 and 2 show the optical conductivity calcu-
lated with DDMRG for ∆ = 1.64t (⇒ t2 = 0.18t and
t1/t2 ≈ 10) and two different couplings U = 3.64t and
U = 0.546t, respectively. The ‘intra-dimer’ band contains
a substantial part of the optical weight and is clearly vis-
ible as the strong feature at 3.4 < ω < 4.2 in Figures 1
and 2.

The current operator now couples nearest neighbor
dimers with a term ∝ t2. Thus, for finite t2 inter-dimer
excitations also contribute to the optical spectrum. At
high energy (ω > 2∆) these excitations give rise to two
small peaks around ω = 2t1 and ω = U + 2t1. These
features are much weaker than the ‘intra-dimer’ band be-
tween 2∆ and 4t as their optical weight is of the order
of t22/t1 and t22/(U + 2t1), respectively. Nevertheless, the
first peak is clearly visible on the top of the ‘intra-dimer’
band in Figure 1 and the second peak in the inset of that
figure at ω ≈ 7.5. We note that these excitations corre-
spond to moving one particle from the bonding orbital of
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Fig. 2. Optical conductivity σ1(ω) in the large-dimerization
limit (∆ = 1.64t) for a weak effective coupling (U = 0.546t ≈
3t2) with a broadening η = 0.2t (L = 64 sites). Inset: high-
resolution and expanded view of σ1(ω) in the low-energy re-
gion ω ≤ 0.2t. DDMRG results (circles) for η = 0.0128t
(L = 200 sites) and field-theoretical result [15] (line) for a
gap Ec = 0.049t and the same broadening η.

a dimer to the anti-bonding orbital of another dimer. In
particular, the inter-dimer excitation which appears in the
middle of the ‘intra-dimer’ band at ω = 2t1 corresponds
to the formation of a triplet state on the second dimer.
Clearly this optical excitation involves both charge and
spin degrees of freedom.

The low-energy spectrum (ω < 2∆) is more inter-
esting. In the large-dimerization limit the model (1) can
be mapped onto a half-filled Hubbard chain with effec-
tive parameters teff = t2/2 and Ueff = U/2 for U small
compared to 4t1 [4]. Consequently, the low-energy spec-
trum is given by the optical conductivity σ1(ω) of the
half-filled Hubbard model, which is known [15]. For in-
stance, for ∆ = 1.64t and U = 3.64t the effective inter-
action is strong Ueff/teff = U/t2 ≈ 20. Accordingly, the
shape of the low-energy band (ω < 2) in Figure 1 is sim-
ilar to the semi-elliptic absorption band centered around
ω = Ueff = 1.82t found in the strong-coupling limit of
the half-filled Hubbard model [15,30]. Also, the optical
weight in this structure is of the order of t2eff/Ueff = t22/U
and thus much lower than in the ‘intra-dimer’ band. For
∆ = 1.64t and U = 0.54t, however, the effective interac-
tion is relatively weak Ueff/teff = U/t2 ≈ 3.3 which corre-
sponds to a small Mott gap Ec ≈ 0.049t ≈ 0.54teff . In that
case, the optical weight in the low-energy region ω < 2∆
is significantly larger than for a strong effective coupling
and comparable to the weight at higher energy, as seen in
Figure 2. Moreover, the low-energy spectrum calculated
with DDMRG (shown with a higher resolution in the in-
set of Fig. 2) agrees very well with the field-theoretical
prediction in the limit of a small Mott gap [15].

3.2 Strong coupling

We now turn to the strong-coupling limit U � t1 > t2. In
this regime the dimerization opens gaps of 2∆ in the lower
and upper Hubbard bands [4] with band widths 4t. At
quarter-filling low-energy elementary charge excitations
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Fig. 3. Reduced optical conductivity ωσ1(ω) in the strong-
coupling limit (U = 40t) calculated with ∆ = 0.6t and a
broadening η = 0.2t (L = 64 sites). The dashed line is the
Peierls insulator spectrum for the same values of ∆ and η.
Inset: expanded view of the high-energy spectrum.

(holons in the lower Hubbard band) have the same disper-
sion (2) as electrons in a half-filled band (Peierls) insula-
tor. In particular, there is a Mott gap Ec = 2∆. Neglecting
the contribution of the spin degrees of freedom to the ma-
trix elements 〈ψn|Ĵ |ψ0〉, where |ψn〉 is an excited state,
one expects [10] that the optical conductivity σ1(ω < U)
is similar to that of a band (Peierls) insulator [31]

σ1(ω) =
(2∆)2(4t)2

4ω2
√

[ω2 − (2∆)2][(4t)2 − ω2]
. (9)

In Figure 3 we compare this analytical result with our nu-
merical DDMRG data for U = 40t and ∆ = 0.6t. Both
spectra have been broadened with a Lorentzian of width
η = 0.2t to facilitate the comparison. The agreement is
excellent but for a small shift ∼ t2/U , which can be at-
tributed to the finite value of U used in the numerical
calculations. At high energy ω > U there is also a weak
absorption band with a total spectral weight ∝ t2/U cor-
responding to charge excitations from the lower to the
upper Hubbard band (see the inset of Fig. 3).

The predictions of the strong-coupling theory remain
qualitatively valid for relatively weak couplings U . For in-
stance, the main features of the spectrum (9) are clearly
visible in the optical conductivity shown in Figure 4,
which has been calculated with DDMRG for U = 5t1 and
t1/t2 = 2 (corresponding to U/t = 20/3 and ∆/t = 2/3).
There is also a weak absorption band not described by
equation (9) at high energy ω > U (see inset of Fig. 4)
as in the strong coupling limit. Note, however, that there
are clear quantitative differences. For instance, for these
parameters we have found a Mott gap Ec = 0.53t (in full
agreement with Ref. [4]), which is clearly smaller than the
strong-coupling result 2∆ ≈ 1.33t.

A close inspection of the DDMRG spectra reveals a
weak structure at low frequency 2∆ < ω < 2t which is
not explained by the simple theory predicting the spectral
form (9). This feature is barely visible around ω = 3 on the
scale of Figure 3 but can be clearly seen as a small bump
around ω = 2.8 in Figure 4. To understand this deviation
from equation (9) it is helpful to analyze the spectrum as
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Fig. 4. Optical conductivity σ1(ω) for ∆/t = 2/3, U/t = 20/3,
and a broadening η = 0.1t (L = 128 sites). Inset: expanded
view of the high-energy spectrum.

a function of the dimerization parameter∆ for very strong
coupling U . For ∆ � t (i.e., t1 ≈ t2) most of the optical
weight is concentrated in the low-energy singularity at ω =
Ec = 2∆, which in the limit ∆ → 0 becomes the Drude
peak of the metallic ground state. For∆ ≈ 2t (i.e., t2/t1 �
1) the optical weight becomes equally distributed between
both divergences at ω = Ec = 2∆ and ω = 4t. Most of the
optical weight is concentrated in this narrow band which
is the counterpart of the ‘intra-dimer’ band found in the
large-dimerization limit (see previous section). Thus, the
optical spectrum is dominated by a similar structure in
both the strong-coupling regime (U � t1) with ∆ ≈ 2t
and the large-dimerization limit (∆ ≈ 2t but U < 4t1).
The weak spectral features, however, are quite different in
both regimes. In particular, there is no optical absorption
at low energy ω < 2∆ in the strong-coupling limit (U �
t1). The crossover from one regime to the other one is
quite complicated and will not be discussed here because
it is not relevant for the (TM)2X salts.

Nevertheless, comparing the results for large dimer-
ization and those for strong coupling we observe that
the unexplained weak feature in σ1(ω) for U � t1 cor-
responds to the excitation involving both charge and spin
degrees of freedom at an energy ω = 2t1 in the dimer limit.
Therefore, we conclude that the spin degrees of freedom
are responsible for the (small) deviation from the simple
Peierls spectrum (9) in the large-U limit. A similarly small
contribution of the spin degrees of freedom to the optical
spectrum has already been observed in analytical calcu-
lations [30] and DDMRG simulations for the half-filled
Hubbard model [15].

3.3 Weak coupling

In the weak-coupling limit U � t2 < t1, the low-energy
sector of the Hamiltonian (1) can be mapped onto a half-
filled chain with an effective (bare) band width 2t2 and
an effective long-range electron-electron interaction ∝ U
which induces a small Mott gap Ec � t2 [4]. The low-
energy properties Ec ≤ ω � 2t2 of this system should
be well described by field-theoretical approaches. In par-
ticular, one expects the optical conductivity to be given
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Fig. 5. Optical conductivity for ∆ = 0.105t, U = 5.263t, and
η = 0.1t (L = 128 sites). Inset: same data on a double loga-
rithmic scale.

by the field-theoretical result for one-dimensional Mott
insulators in the small gap regime [15,16]. For weak cou-
pling the optical weight must be concentrated at low en-
ergy ω ∼ Ec � t,∆ as one expects that most of the
spectral weight lies in the Drude peak when the system
becomes metallic (Ec → 0). Therefore, the field theoret-
ical approach describes the essential part of the optical
spectrum.

We have performed several DDMRG calculations
of σ1(ω) in this weak-coupling regime. For instance,
Figure 5 shows the optical conductivity calculated for
U = 5.263t and ∆ = 0.105t (corresponding to t2/t1 =
0.9). Clearly, the optical weight is concentrated in a sharp
peak at low frequency as expected (the long tail at high
frequency is mostly due to the broadening η = 0.1t). For
these parameters the Mott gap is Ec ≈ 0.03t in the ther-
modynamic limit and the optical gap converges to the
same value as seen in Figure 6. The broadening of the
DDMRG spectrum also results in an apparent shift of the
peak position [i.e., the maximum ωmax of σ1(ω)] to higher
frequencies. In the limit of an infinite chain and with the
scaling (8) one finds (see Fig. 6) that ωmax approaches a
value (0.04t) only slightly larger than the Mott gap Ec

in agreement with the field theory prediction [15,16]. As
most of the spectral weight is concentrated on a scale
ω ∼ Ec comparable or smaller than our typical resolu-
tion η, it is not possible to make a quantitative compar-
ison between field theory and numerical results for the
spectral lineshape. Nevertheless, our DDMRG results are
always qualitatively compatible with field-theoretical pre-
dictions for the behavior of σ1(ω) at frequencies of the
order of the charge gap Ec.

A field-theoretical analysis [17] of the optical conduc-
tivity in one-dimensional Mott insulators predicts that the
leading asymptotic behavior at high frequency ω � Ec is

σ1(ω) ∼ ω−α, (10)

where the exponent α ≥ 1 depends on the interaction
strength. This power-law behavior is a good approxima-
tion at extremely high frequencies ω ∼ 102Ec only [16]
and the field theory approach is only valid for energies
much smaller than the effective band width ∼ 2t. Thus,
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function of the inverse system size for ∆ = 0.105t, U = 5.263t,
and V = 0. Lines are quadratic fits.

in the lattice model (1) one can observe such an asymp-
totic behavior in the limit of small Mott gaps only (i.e.,
for Ec � ω � t). Moreover, the high-frequency behavior
can be modified by various processes which are neglected
in the field-theoretical approach but generate additional
optical transitions for ω > Ec, such as inter-band transi-
tions at ω ≥ 2∆ or transitions between the lower and up-
per Hubbard band around ω = U . For instance, we have
seen in Section 3.1 that in the (effective) weak-coupling
regime of the dimerized limit the low-frequency spectrum
ω ∼ Ec � t can be described with field theory but the
high-frequency spectrum is dominated by the inter-dimer
excitations around ω ≈ 2∆ (see Fig. 2). Obviously, a
power-law behavior cannot be observed for Ec � ω � t
in that case. In practice, only the weak-coupling regime of
the Hamiltonian (1) seems to fulfill both conditions nec-
essary for the occurrence of the asymptotic power-law be-
havior of σ1(ω): (i) a small Mott gap Ec � t and (ii) no
other optical excitation in the relevant frequency range.

We have found that DDMRG spectra for finite broad-
ening η and system size often decay as a power-law at high
frequency. In the inset of Figure 5 one clearly sees such a
behavior with an exponent ≈ −1.2 for 0.2t < ω < 10t cor-
responding to 7Ec < ω < 330Ec. (In Sect. 3.5 we will see
that the high-frequency spectrum is actually dominated
by another feature explained by a strong-coupling anal-
ysis.) However, the exponent and the range over which
the power-law behavior can be observed depend on the
method used to broaden the spectrum in the DDMRG
calculation (see Sect. 2), the broadening η, and even the
system size. Therefore, this power-law decay is probably
an artifact of our numerical approach. This effect can eas-
ily be understood if one assumes that most of the optical
weight is concentrated in a sharp structure at ω ∼ Ec. The
broadening of this structure creates a broad tail which de-
creases asymptotically as ηA1ω

−β, where the exponent β
lies between 1 and 3 (depending on the precise broaden-
ing technique used in the DDMRG simulation) and the
coefficient A1 is proportional to the total optical weight.
Obviously, this artificial broad tail hides an asymptotic
behavior σ1(ω) ∼ A2ω

−α for β < α. It can also hide

the asymptotic behavior of σ1(ω) up to relatively large
frequencies for β > α if the high-frequency spectrum con-
tains only a small fraction of the total optical weight (i.e.,
A2 � ηA1). We think that this effect is responsible for the
power-law observed in our DDMRG spectra with a finite
broadening η.

To determine the true asymptotic behavior of σ1(ω)
we have tried to deconvolve the DDMRG spectra for fi-
nite η in order to obtain spectra for η = 0 in the thermo-
dynamic limit [27]. The resulting spectra do not show a
power-law behavior in any significant range of frequencies.
Unfortunately, the accuracy of the deconvolved spectra is
very poor at high frequencies because our deconvolution
technique (linear regularization approach for an inverse
problem [29]) does not work well when the spectrum is
dominated by sharp structures as in Figure 5.

In summary, we have not been able to determine the
asymptotic behavior of σ1(ω) in the weak-coupling regime.
While some of the raw DDMRG data clearly exhibit a
power-law behavior at high frequency, we think that this
is an artifact of our method. We can not confirm (or refute)
the validity of the field-theory prediction (10) for the lat-
tice model (1) investigated here. Nevertheless, our investi-
gation leads us to conclude that an asymptotic power-law
behavior (10) can occur only in the weak-coupling regime.
Moreover, the optical weight at high-frequency (i.e., in the
asymptotic tail) can only be a small fraction of the to-
tal optical weight, which is concentrated just above the
gap Ec.

3.4 From small to large dimerization

Although the nature of the optical excitations greatly
differs in the strong and weak coupling limits, we have
found that the evolution of the optical spectrum with ∆
is qualitatively similar for all values of U > 0. In the
strong-coupling limit the spectrum is given by equation (9)
and thus the evolution of σ1(ω) with ∆ can be described
accurately. When the dimerization is weak (∆ � t),
most of the optical weight is concentrated just above the
first singularity at the spectrum onset ω = Ec = 2∆
and the second singularity at ω = 4t carries very lit-
tle weight. As ∆ increases, the optical weight is progres-
sively transfered from the low-energy singularity to the
high-energy one until the spectral weight becomes equally
distributed between both singularities as one reaches the
large dimerization limit ∆ → 2t. Simultaneously, the
first singularity moves to higher energy as ∆ increases
and ultimately merges with the second (fixed) one as ∆
reaches 2t. Therefore, we observe both a transfer of opti-
cal weight from a low-energy structure around ω = Ec to
a high-energy structure around ω = 4t and a shift of the
low-energy structure toward higher excitation energies as
∆ increases.

Away from the strong-coupling limit equation (9)
is not an accurate description of the optical spectrum.
Nevertheless, our DDMRG calculations show a qualita-
tively similar evolution of the spectrum as a function
of ∆ for all values of U that we have analyzed (i.e., down



H. Benthien and E. Jeckelmann: Optical conductivity of the one-dimensional dimerized Hubbard model 293

0 1 2 3 4 5 6
ω

0

0.5

1

1.5

σ 1(ω
)

∆=0.25t
∆=t
∆=1.5t

Fig. 7. Optical conductivity σ1(ω) for U = 6t and η = 0.2t
(L = 32) for various dimerizations ∆.

to U = t). For instance, Figure 7 shows the optical con-
ductivity calculated with DDMRG for U = 6t and several
values of ∆. We clearly see both the optical weight trans-
fer from the low-energy peak to the high-energy structure
and the shift of the low-energy peak toward higher energy
as ∆ increases. We note, however, that the low-energy
peak is close to the Mott gap Ec for small ∆ only. For
larger ∆ the position of the first peak moves away from Ec

(at least when U is not too large) contrary to the strong-
coupling result (9). As a result, the dominant features in
σ1(ω) can lie well above the Mott gap Ec as already shown
for the large-dimerization limit in Section 3.1. The high-
energy structure always lies at an energy close to 4t for
all U and ∆ but its weight can become so small that it is
no longer visible such as in the weak-coupling limit (see
Fig. 5).

3.5 From weak to strong coupling

For a given dimerization ∆ < 2t the strength U of the
local Coulomb interaction significantly modifies the Mott
gap Ec, which is equal to the optical gap for ∆ < 2t
and V = 0. However, it has little effect on the main fea-
tures of the optical spectrum and just modifies the fine
structure. For instance, Figure 8 shows the reduced opti-
cal conductivity calculated with DDMRG for ∆ = 1.64t
and various values of U . For U ≤ 4t the optical spectrum
is well explained by the analysis of the large-dimerization
limit (Sect. 3.1). It consists of a strong structure at ω ≈
2t1 = 3.64t (the intra-dimer band) and weaker features at
ω ≈ Ec and ω ≈ 2t1 + U (see Fig. 1). When U increases,
the gap becomes larger and correspondingly we observe
a progressive shift of the low-frequency weak structure
toward the strong peak in Figure 8. Simultaneously, the
high-frequency weak feature moves to higher energies in
agreement with the relation ω ≈ 2t1 + U (see the inset of
Fig. 8). However, the strong dominant structure remains
largely unaffected by the variation of the coupling U .

Nevertheless, the analysis of the optical conductivity
for changing U yields an interesting result. As discussed
in Section 3.3 in the weak-coupling approach the local
interaction term is responsible for an (effective) interac-
tion ∝ U which splits the (effectively) half-filled band
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Fig. 8. Reduced optical conductivity ωσ1(ω) calculated with
η = 0.2t (L = 64) for ∆ = 1.64t and various values of U . Inset:
expanded view of the high-frequency conductivity spectrum.
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[defined by the lower part of the single-particle disper-
sion (2)] in two (effective) Hubbard bands separated by
a gap Ec. Excitations from the lower to the upper effec-
tive Hubbard bands significantly contribute to the opti-
cal spectrum on the energy scale ω = Ec. In the strong-
coupling approach the local interaction term splits the full
band defined by the dispersion (2) in two (full) Hubbard
bands separated by a gap ∼ U . In that case, excitations
from the lower to the upper full Hubbard bands con-
tribute to the optical spectrum around ω = U . Our calcu-
lations show that both features can be seen (for instance,
in Figs. 1 and 8) for a given value of U . Therefore, we
conclude that, at least for some parameters (∆,U) of the
model (1), the low-frequency part of the optical spectrum
is explained by weak-coupling (i.e., field-theoretical) ap-
proaches while the high-frequency part is explained by a
strong-coupling analysis.

As a second example of the optical spectrum evolution
with U , we show the reduced optical conductivity calcu-
lated with DDMRG for a small dimerization ∆ = 0.105t
and various interaction strengths U in Figure 9. For U = t
the system is in the weak-coupling limit (discussed in
Sect. 3.3) and most of the spectral weight is concentrated
in a peak close to ω = Ec. A second weaker feature is
visible at about ω = 4t (see the inset of Fig. 9) and
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corresponds to transitions from the bottom to the top
of the single-particle band (2). For larger U the optical
weight remains concentrated in the low-energy peak at
ω ≈ Ec. This peak moves to slightly higher energies and
appears to broaden because the energy scale set by the
gap Ec increases with U until it reaches 2∆ for U → ∞ as
discussed in Section 3.2 but its shape is not significantly
changed by the variation of U . The feature at ω ≈ 4t
disappears for U > 4t but another weak feature becomes
visible around ω ≈ U for strong enough coupling U (see
the inset of Fig. 9). Again this corresponds to optical exci-
tations from the lower to the upper (full) Hubbard bands.

We note that for U = 5.263t this contribution to
the optical spectrum is already clearly visible around
ω − U = 4t in the inset of Figure 9. This result con-
tradicts the apparent asymptotic power-law decrease (10)
discussed previously for the same parameters (see Fig. 5).
This discrepancy is due to the different broadening meth-
ods and data representation used for Figures 5 and 9. It
confirms that the asymptotic power law found in some of
our spectra for weak couplings are probably an artifact of
the broadening used in the DDMRG calculation. This also
illustrates how difficult it is to observe the field-theoretical
predictions (10) for the asymptotic behavior of σ1(ω) in
the lattice model (1) because optical transitions neglected
in the field theory approach significantly contributes to
the high-frequency spectrum.

In summary, our calculations for the model (1) with
V = 0 show that the distribution of the optical weight is
essentially determined by the dimerization amplitude ∆.
For a fixed ∆ only the fine structure of the optical spec-
trum and the energy scale set by the gap Ec depend sig-
nificantly on U .

3.6 Nearest-neighbor interaction

Neglecting the long-range part of the Coulomb interaction
is difficult to justify in an insulator. In this section we
consider the effects of a nearest-neighbor repulsion V > 0
in the Hamiltonian (1). (This term mimics the long-range
part of the Coulomb interaction.) For large enough V the
nature of the ground state of (1) changes from a Mott
insulator to a CDW insulator [8]. Here we discuss only
the optical conductivity in the Mott insulating phase.

A previous DMRG investigation [7] of the model (1)
has shown that the charge gap Ec increases with V in
the Mott insulating phase. Our calculations confirm this
result. For V = 0 (and ∆ < 2t) the optical gap ω1 is
equal to the Mott gap Ec in the thermodynamic limit
(see Fig. 6 for an example). This gap marks the onset of
an excitation continuum of unbound pairs of elementary
charged excitations (for instance, holon-antiholon pairs in
the weak-coupling picture [16]) which are responsible for
the lowest absorption band in the optical conductivity.
We have found that the optical gap remains equal to the
Mott gap for non-zero but small nearest-neighbor repul-
sion V . Thus, the low-energy spectrum still corresponds
to unbound pairs of charged excitations.
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Fig. 10. Optical conductivity σ1(ω) for ∆ = 0.105t, U =
5.263t, η = 0.2t (L = 64), and various nearest-neighbor
interactions V .
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Fig. 11. Mott gap Ec (circle), optical gap ω1 (square), and
position ωmax of the spectrum maximum (cross) as a function
of the inverse system size for (a) ∆ = 0.105t, U = 5.263t, and
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are quadratic fits.

Figure 10 illustrates two main effects of the nearest-
neighbor repulsion on the optical spectrum for small V .
First, the low-frequency peak above Ec is shifted to
higher frequency as V increases because Ec also increases.
Secondly, the total spectral weight decreases with increas-
ing V as described in reference [5].

For stronger coupling V , however, we have found that
the optical gap extrapolates to a smaller value than the
Mott gap in the limit of an infinite chain. This can be seen
in Figure 11. In the first example (for ∆ = 0.105t, U =
5.263t, and V = 2.105t) the difference Eb = ω1 − Ec

is small (about 0.04t) but in the second example (for
∆ = 0.353t, U = 8.235t, and V = 3.294t) it is large
(Eb ≈ 0.9t). Moreover, the maximum of the optical spec-
trum is located at a frequency ωmax which approaches the
same value as ω1 in the thermodynamic limit. This is the
signature of a excitonic peak (δ-peak) at ω = ω1 in the op-
tical spectrum of the Mott insulator. (See Refs. [18,24,25]
for a description of the analysis that allows us to identify
an excitonic peak in a DDMRG spectrum.) The presence
of an excitonic peak signals a fundamental change in the
nature of the lowest optical excitation. It is now a neutral
bound pair (for instance, a bound holon-antiholon pair
in field theory) called a Mott-Hubbard exciton [24]. The
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Fig. 12. Optical conductivity σ1(ω) for ∆ = 0.353t, U =
8.235t, η = 0.2t (L = 64), and various nearest-neighbor
interactions V .

properties of Mott-Hubbard excitons have been investi-
gated using DDMRG and analytical methods in a previ-
ous work [24]. The exciton energy ω1 is smaller than the
excitation energy of the lowest unbound pair of charged
excitations in the continuum (which is Ec). The differ-
ence Eb = ω1 − Ec is the binding energy of the exciton.
Therefore, the first example in Figure 11 corresponds to
a weakly bound (large) Mott-Hubbard exciton while the
second example corresponds to a tightly bound (small)
one.

The exciton generates a δ-peak at ω = ω1 < Ec in the
optical conductivity spectrum. As V increases the exci-
ton becomes more tightly bound (smaller) and the opti-
cal weight is progressively transfered from the continuum
above Ec to the excitonic peak. In Figure 12 one sees
that the optical weight first moves to higher frequency as
one increases the coupling V form 0 to 1.636t because the
Mott gap Ec (i.e., the continuum onset) increases. If the
coupling V is increased further to 3.294t, one finds that
the spectral weight shifts to lower frequency because it is
transfered to the excitonic peak at ω1 ≈ 0.5t lying below
the continuum onset at Ec = 1.4t (which still increases
with V ). (Note that the gap between the exciton peak
and the continuum is not visible in Fig. 12 for V = 3.294t
because of the broadening of the spectrum.) The (weak)
structure visible at ω ≈ 4t in the spectra calculated for
V = 0 rapidly looses weight as V increases. In summary,
we have found that the nearest-neighbor repulsion V has
a significant impact on the shape of the optical spectrum
contrary to the on-site repulsion, but only when it is large
enough to generate an exciton.

4 Discussion

In this section we discuss the implications of our results
for the theory of the Bechgaard salts. First, we exam-
ine which values of the model parameters could be ap-
propriate for (TM)2X salts. Realistic estimates for the
hopping integrals t1 and t2 were proposed more than
ten years ago on the basis of experimental results [10]
and quantum-chemistry calculations [19]. Using these esti-
mates Mila [5] determined the model parameters U and V

from the reduction of the infrared oscillator strength ob-
served experimentally in the Bechgaard salts. He found
that relatively large nearest-neighbor repulsions V were
necessary to explain the reduction of the electron ki-
netic energy due to correlation effects. According to Mila’s
analysis appropriate model parameters are t2/t1 = 0.9,
U = 5t1, and V = 2t1, which correspond to ∆ = 0.105t,
U = 5.263t, and V = 2.105t, for (TMTSF)2ClO4 and
t2/t1 = 0.7, U = 7t1, and V = 2.8t1, which corre-
spond to ∆ = 0.353t, U = 8.235t, and V = 3.294t,
for (TMTTF)2PF6. The optical spectrum obtained with
DDMRG for these parameters are shown in Figures 10
and 12, respectively. As explained in Section 3.6 we have
found that the lowest optical excitation is an exciton with
an energy ω1 smaller than the Mott gap Ec for these pa-
rameters (see Fig. 11).

More recently, Nishimoto et al. [7] fitted the Mott gap
of the model (1) to the experimental optical gap to deter-
mine the model parameters. Using the same ratios t2/t1
and U/t1 as Mila they found that the nearest-neighbor
repulsions V necessary to reproduce the optical gap data
were significantly smaller than the values given by the
reduction of the oscillator strength. According to their
analysis V = 0.764t for (TMTSF)2ClO4 and V = 1.636t
for (TMTTF)2PF6. The optical spectrum obtained with
DDMRG for these parameters are also shown in Figures 10
and 12, respectively. In that case we have found that there
is no exciton and an absorption continuum due to un-
bound pairs of charged excitations starts at ω = ω1 = Ec.

The discrepancy between these studies can be un-
derstood. In the (TMTSF)2ClO4 case the kinetic energy
is a rather flat function of V for the relevant param-
eters t1, t2, U [5] while the Mott gap increases rapidly
with V [7]. Thus, the uncertainty on Mila’s value for V is
quite large and the value V = 0.764t reported by Nishi-
moto et al. is also compatible with the experimental reduc-
tion of the oscillator strength. Therefore, we conclude that
for the salt (TMTSF)2ClO4 the nearest-neighbor interac-
tion should be close to (though somewhat larger than) the
value given by Nishimoto et al. and excitons do not play
any role in the optical excitation spectrum. The appropri-
ate model parameters for (TMTSF)2ClO4 are summarized
in Table 1.

In the (TMTTF)2PF6 case, however, the kinetic en-
ergy is a rather steep function of V for the relevant pa-
rameters t1, t2, U [5] and the value V = 1.636t found
by Nishimoto et al. is only compatible with the oscil-
lator strength reduction for unrealistically large U . As
Nishimoto et al. assumed that the experimental optical
gap corresponded to the theoretical Mott gap Ec, they ef-
fectively neglected excitonic contributions to the optical
spectrum. In particular, their analysis does not take into
account that the theoretical optical gap ω1 is significantly
smaller than the Mott gap Ec for large V when excitons
occur, as seen in Figure 11b. As a result their analysis
underestimates the value of V . Therefore, we conclude
that for (TMTTF)2PF6 the nearest-neighbor interaction
should be close to (though somewhat smaller than) the
value V = 3.294t found by Mila and excitons dominate
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the optical excitation spectrum [at least in the framework
of the model (1)]. The appropriate model parameters for
(TMTTF)2PF6 are summarized in Table 1.

We now examine how the main features of the optical
spectrum in (TM)2X salts can be explained by the dimer-
ized extended Hubbard model with the parameters deter-
mined above. Parallel to the stacks of organic molecules
the optical conductivity of (TMTSF)2X salts has two dis-
tinct components: a narrow peak at zero frequency (Drude
peak) with a very small fraction (about 1%) of the spectral
weight and an absorption band with most of the spec-
tral weight at finite energy [11–14]. This second feature
lies in the mid infrared range above the crossover energy
above which excitations are effectively confined to a sin-
gle stack and thus can be described by one-dimensional
models. (Obviously, the zero-energy feature always lies be-
low such a crossover energy and can only be described in
the framework of a three-dimensional model.) The finite-
energy feature is usually interpreted in terms of a Mott
insulator. When rescaled by the intensity and frequency of
the spectrum maximum, the optical conductivity of var-
ious (TMTSF)2X salts exhibit a remarkably similar be-
havior [13]. In particular, a power law in the frequency
dependence

σ1(ω)
σ1(ωmax)

= C

(
ω

ωmax

)−1.3

(11)

is observed over a decade in frequency 2ωpeak < ω <
20ωpeak.

As discussed in Section 3.3 our numerical approach is
not sufficiently accurate to confirm the existence of such
an asymptotic power-law behavior in the optical spectrum
of the model (1). Nevertheless, our analysis clearly indi-
cates that if there is a power-law behavior of σ1(ω) for
some frequency range in the model (1), the optical weight
associated with that feature must be extremely small com-
pared to the optical weight of the peak feature. In the ex-
perimental spectrum, however, there is substantial optical
weight in the region where the power-law behavior is visi-
ble. Therefore, we conclude that the universal feature (11)
of the optical spectrum in (TMTSF)2X salts cannot be ex-
plained within the model (1).

The well-defined mid infrared structure observed in the
optical spectrum of the Bechgaard salt (TMTSF)2PF6 is
difficult to understand in view of the fact that its DC con-
ductivity remains metallic down to very low temperature.
It seems that optical excitations are visible only for ener-
gies much larger than the energy scale above which the
system can be seen as metallic (i.e., the Mott gap for
charge excitations). Therefore, Favand and Mila [6] have
proposed that the optical gap ω1 observed in the absorp-
tion spectrum is much larger than the Mott gap Ec be-
cause of optical selection rules. Using exact diagonaliza-
tions of small systems they have argued that such an effect
occurs in the quarter-filled dimerized Hubbard model (1)
without the nearest-neighbor repulsion V . Our analysis of
this model shows that the Mott gap is smaller than the
optical gap only in the dimer case ∆ = 2t (see the dis-
cussion in Sect. 3.1). For all other parameters (t1, t2, U),

however, we have found that ω1 = Ec (ω1 < Ec is also
possible for V > 0 as shown in Sect. 3.6). It can hap-
pen that the optical weight at the Mott gap is very small
while a very strong structure is visible in the spectrum
at a higher energy. For instance, this occurs in the large-
dimerization limit as seen in Figure 1. In a real material
with such an absorption spectrum the weak low-energy
band could easily be overlooked, leading to an apparent
“optical gap” larger than the real gap for charge excita-
tions Ec. For realistic parameters, however, we always find
that the optical weight is very large close to the Mott gap.
In particular, for the parameters t2 = 0.9t1 and U = 5t1
(∆ = 0.105t and U = 5.263t) used by Favand and Mila for
(TMTSF)2PF6 (see Tab. 1) we have found that the Mott
gap, the optical gap, and the maximum of the spectrum
converge to very close values in the thermodynamic limit
(see Fig. 6). We conclude that the model (1) cannot ex-
plain the apparent discrepancy between energy scales in
the optical spectrum and the conductivity measurements
for the Bechgaard salt (TMTSF)2PF6.

Parallel to the stacks of organic molecules the optical
properties of (TMTTF)2X salts are clearly those of semi-
conductors [12,14]. The optical spectrum displays sev-
eral strong absorption features which are attributed to
the coupling of electronic excitations with lattice vibra-
tions. These transitions have a higher energy than the
crossover energy above which excitations are effectively
confined to a single stack and thus can be described by
a one-dimensional model. A remarkable property of the
(TMTTF)2X salts is that the optical gap is smaller than
the Mott gap determined by photoemission experiments.
For (TMTTF)2PF6 one observes that the strongest struc-
ture in the optical spectrum is a relatively sharp peak at
an energy (about 100 meV) significantly smaller than the
Mott gap (about 200 meV). Obviously, this can be inter-
preted as the signature of an excitonic transition below
the gap for charged excitations. Thus, experimental ob-
servations are compatible with the theoretical prediction
of excitons in (TMTTF)2PF6 based on the model (1) and
Mila’s estimation [5] for the appropriate parameters (espe-
cially, the strength of the nearest-neighbor interaction V ).
Quantitatively, we find Ec ≈ 160 meV and an exciton en-
ergy of ω1 ≈ 60 meV using the parameters in Table 1.
These energies are in very satisfactory agreement with the
experimental values. Therefore, we conclude that excitons
are present in the optical spectrum of (TMTTF)2PF6 [and
probably other (TMTTF)2X salts] and explain the ob-
servation of absorption features below the gap measured
with photoemission spectroscopy. It would be interesting
to have a direct experimental evidence for the presence
of excitons in those salts. For instance, one could investi-
gate the electro-absorption spectrum to demonstrate the
presence of excitons as it was done for another quasi-one-
dimensional material, polydiacetylene [32].

In conclusion, we have investigated the optical con-
ductivity of the one-dimensional dimerized extended
Hubbard model at quarter filling using the dynamical
density-matrix renormalization group. We have found
that the dimerization amplitude and the nearest-neighbor
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repulsion (if strong enough to form excitons) determine
the main features of the optical spectrum. Besides its in-
fluence on the energy scale set by the Mott gap, the on-
site repulsion plays a minor role only. Our study shows
that this model cannot explain the optical spectrum in
the Bechgaard salts (TMTSF)2X. It also shows that ex-
citons probably contribute to the optical spectrum in the
(TMTTF)2X salts.
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for helpful discussions. H.B. acknowledges support by the
Optodynamics Center of the Philipps-Universität Marburg.

References

1. Organic Conductors, edited by J.-P. Farges
(Marcel Dekker, New York, 1994)

2. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors
(Springer, Berlin, 1998)
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